
Comprehensive Enterprise-Class Layer 2/3 Network Operating System for Open Networking Hardware Optimized for Enterprise, Service Provider and Distributed Cloud Data Center Deployments

Moving to bare metal open networking switches brings significant operational and financial benefits to build next-generation networks with the capacity needed to achieve distributed cloud scale, agility, elasticity and adaptability. In the move to a disaggregated open networking strategy, selecting the right network operating system (OS) is a critical success factor as the OS unlocks the functionality, services and performance from open networking switches to realize the most value.

Netvisor® ONE is an open, secure and programmable next-generation network OS that is purpose built to optimize the power and performance of bare metal open networking hardware. Deployment-proven in production mission-critical enterprise and carrier networks, Netvisor ONE meets the most stringent performance requirements and delivers the maximum levels of reliability and flexibility at scale, without compromise.

Built on a Linux foundation, Netvisor ONE is a best-in-class, full-featured network OS that delivers an extensive range of network services, and Layer 2 and 3 switching and routing protocols supporting both IPv4 and IPv6 implementations. Netvisor is built using open networking standards to assure interoperability and operational consistency with existing traditional networking platforms, enabling seamless transition to a disaggregated open networking strategy.

The programmable, modular and containerized architecture of Netvisor ONE enables the rapid adoption and deployment of new networking features and advanced networking services as standards evolve and new capabilities become available.

Exposed APIs support automation and provide unrestricted access to the data, control and management planes for true agility to deliver exceptional operational flexibility. Netvisor ONE brings exceptional operational flexibility with extensibility to scale from deployment in a single device, to advanced services such as VXLAN, to enabling the distributed Adaptive Cloud Fabric™ architecture that federates many devices into a holistic peer-to-peer distributed network to meet diverse deployment requirements.
As enterprises and regional cloud and colocation providers build their next generation of data centers spanning multiple locations to meet the application’s requirements and the placement of workloads at the lowest cost, we will see an increase in the number of mini and micro data center locations, possibly by a factor of ten or more. With this comes increased complexity and a need for a counterbalance – a highly automated network fabric that can make multiple edge locations appear as one logical unit in order to simplify the management of multiple remote data center sites.

Built to Optimize Open Networking Hardware
Netvisor ONE runs on many Open Compute Project (OCP) and Open Network Install Environment (ONIE) hardware-compliant switches, including devices from Dell EMC and Edgecore, as well as the Pluribus Freedom™ Series network switches. This flexibility allows organizations the choice of open networking hardware to build scale-out networks with 10, 25, 40 or 100 Gigabit Ethernet interfaces. This allows an entire data center to be built with only a few physical switch models to improve operational consistency, lower costs and simplifying sparing strategies.

Deployment Flexibility
Netvisor ONE can be deployed as a single OS software image to support any mix of multiple vendor open networking switches in all deployment points, including the data center leaf and spine, campus aggregation and edge, to enable deployment flexibility. This allows building a network with multi-vendor hardware to flexibly support evolving physical interface requirements unified by a common and consistent OS to reduce operational complexity, improve efficiency and lower TCO.

Standards-Based Networking for Multi-Vendor Interoperability
The Netvisor ONE OS leverages the power of Broadcom switching silicon to deliver the same rich and reliable standards-based networking capabilities expected from traditional closed networking platforms. Consequently, Netvisor ONE-powered open networking switches can be seamlessly inserted into any existing network, enabling full interoperability with standards-based networking equipment, protocols or network topology. This enables graceful migration to next-generation, disaggregated open networking architectures while preserving existing technology investments and operational models. Integration of open source FRRouting brings in a rich IP routing protocol suite (OSPF, OSPFv3, BGP, MP-BGP, PIM, RIP, etc.).

High Availability and Resiliency
To meet the stringent continuous availability requirements for mission-critical enterprise and service provider operations, Netvisor ONE provides a comprehensive array of standards-based redundancy protocols and services.

The fully distributed control plane architecture enables a highly available Layer 2/3 underlay and overlay infrastructure. Key high-availability capabilities include switch clustering, multi-chassis LAG (vLAG) VRRP, BFD, ECMP, redundant VTEPs and distributed anycast gateway. Netvisor ONE is built for ultra-fast convergence and sub-second failover to enable reliable deployment as either an underlay or overlay network. When deployed in the Adaptive Cloud Fabric distributed architecture, the unique peering architecture enables highly available, resilient operations across the fabric regardless of the physical location of devices.

Control Plane Traffic Protection
Netvisor ONE delivers exceptional high availability with its Control Plane Traffic Protection (CPTP) architecture. CPTP protects the CPU from excessive traffic volumes and provides fine-grained control and QoS over different types of control plane classes using 64 independent queues. The auto-quarantine host-hog prevention mechanism identifies and automatically quarantines offending host traffic in hardware. The offending host activity is monitored and traffic is resumed automatically when the offending flow ceases.

Manageability, Programmability and Automation
The programmability and automation of Netvisor ONE deliver rapid service provisioning through open programming interfaces enabling both NetOps and DevOps automation to accelerate provisioning, configuration changes and new service roll-outs. Netvisor ONE supports plug-and-play operations and zero-touch provisioning and configuration. Policy and services can be provisioned with a single command via RESTful APIs or command line interface (CLI) with complete functional parity, enabling IT organizations to overcome IT skill gaps and bridge the operational models between DevOps and NetOps.

Automation tools, such as Ansible or the Pluribus UNUM™ management platform, can be leveraged to streamline the provisioning of an entire deployment. In addition, Netvisor ONE supports a wide array of Linux tools for scripting and automation, as well as traditional NetOps interfaces for SSH, TLS 1.2, SNMP, Syslog, sFlow and IPFIX. As a result, workflow automation reduces configuration time by up to 90% over traditional box-by-box management, lowers the risk of configuration errors and dramatically improves service velocity and operational agility.

Secure, Role-Based Management Access
The Netvisor OS has extensive security mechanisms to protect access to OS commands through authentication, authorization, and accounting (AAA) access controls. Administrative user authentication is supported through standards-based mechanisms including TACACS+, Secure Shell (SSH) Version 2 and TLS 1.2. Granular permissions can be defined on a per-user, per-role and per-tenant basis, limiting command-level access for all commands performed for all configuration levels.
Advanced Virtualized Design

Netvisor ONE is fully virtualized to decouple network resources from the underlying hardware. Similar to how a hypervisor virtualizes a bare metal server, this enables segmenting the operating system components and hardware resources into virtual network containers. Each virtual network container has its own software processes and dedicated network resources, including dedicated routing data and control planes and an independent management environment. This enables the convergence of multiple concurrent network functions on a single switch with the ability to create segmented services and tenants.

The unique network virtualization of Netvisor ONE allows a single switch to instantiate multiple virtual networks that can be dynamically allocated to a single device, or span across multiple physical devices enabling granular network segmentation, multi-tenant services and integrated virtualized network services and functions into open switching hardware. The Netvisor ONE virtualized network containers are not hardware bound, so a virtualized network container can reside on any switch, be duplicated across switches or be moved on demand and reallocated from one physical switch to another physical switch.

Adaptive Cloud Fabric Architecture

The Adaptive Cloud Fabric is a simple and secure next-generation software-defined peer-to-peer distributed network architecture that clusters all Netvisor ONE-powered switches into a symmetrical, unified operating domain. The Adaptive Cloud Fabric operates without a controller, so it can seamlessly interoperate with existing networks, enabling a non-disruptive, graceful migration to a software-defined data center or enterprise architecture.

To meet stringent high availability requirements, the Adaptive Cloud Fabric architecture has no single point of failure and delivers fabric-wide sub-second failover and resiliency. Fabric automation provides a single point of management and control, distributes intelligence, integrates a broad range of advanced network services and provides pervasive visibility for all traffic traversing the fabric.

The Adaptive Cloud Fabric can be deployed across a single data center, across a campus or geographically distributed to seamlessly interconnect dozens of data centers or aggregate the campus edge over any existing Layer 2 or Layer 3 core. The fabric can scale out to support many thousands of ports, with multi-terabit capacity, performance and latency predictability, and support millions of concurrent connections. The result is a simple and dynamic architecture that brings a significant operational advantage over controller-based SDN architectures.

Advanced Fabric Services

In addition to enabling the distributed fabric architecture, the Adaptive Cloud Fabric license also enables high-value advanced network services, including:

- Advanced VXLAN services
- Network virtualization to enable traffic segmentation and multi-tenant services
- Integrated network performance monitoring telemetry
- Flowtrace for troubleshooting packets across the fabric
- Integrations with VMware vSphere and NSX for automated provisioning of network resources

The Adaptive Cloud Fabric capabilities and advanced services of Netvisor ONE are optionally licensed at time of initial deployment, or may be unlocked as an in-place, non-disruptive upgrade for existing devices through a simple license key.
Pluribus Networks offers a wide range of advanced services spanning the entire network lifecycle to protect investments and help accelerate success when deploying and optimizing the Netvisor operating system and next-generation network architectures. Multiple extended support options are available, including on-demand global support, on-site support, advanced hardware replacements and professional implementation services. Maintenance options include direct access to a team of expert network engineers with deep networking experience and our self-service online Customer Portal. For more information about Pluribus support options, visit http://www.pluribusnetworks.com/support or contact a Pluribus Networks authorized reseller.

Warranty and Support

Pluribus Networks offers a wide range of advanced services spanning the entire network lifecycle to protect investments and help accelerate success when deploying and optimizing the Netvisor operating system and next-generation network architectures. Multiple extended support options are available, including on-demand global support, on-site support, advanced hardware replacements and professional implementation services. Maintenance options include direct access to a team of expert network engineers with deep networking experience and our self-service online Customer Portal. For more information about Pluribus support options, visit http://www.pluribusnetworks.com/support or contact a Pluribus Networks authorized reseller.

Features and Specifications

Layer 2

Enterprise Edition
- 802.3z Gigabit Ethernet
- 802.3ab 1000BASE-T
- 802.3ae 10 Gigabit Ethernet
- 802.3ba 100 Gigabit Ethernet
- 802.1D Spanning Tree
- 802.1w Per VLAN Rapid Spanning Tree Protocol (RPVSTP) and RSTP PortFast
- 802.1s Multiple Spanning Tree Protocol (MSTP)
- 802.3ad Link Aggregation (LACP)
- Link Aggregation Group (LAG)
- Multi-Chassis LAG (vLAG)
- STP Cluster Awareness
- Port Fast, BPDU Guard, BPDU Filter, Root Guard
- 80.1q VLANs, VLAN Trunks
- 80.1ab Link Layer Discovery Protocol (LLDP)
- Storm control for Multicast and Broadcast
- 80.1Q/Qbb — Priority-based Flow Control
- iGMP v2/v3 snooping
- MLD snooping v1/v2
- Jumbo frames (9216 Bytes)
- Private VLAN Edge (for Cisco Interop)

Fabric Edition adds
- Automatic port channeling
- Fabric ARP and IPv6 Neighbor Discovery Optimization
- Fabric Guard

Layer 3

Enterprise Edition
- Routing Protocols: OSPF, OSPFv3, BGP, MP-BGP and RIPv2
- VRRP for IPv4 and IPv6 with active-active forwarding
- Dual-stack IPv4/IPv6
- Equal-cost multi-path routing (ECMP)
- Policy Based Routing (PBR)
- Bidirectional Forwarding Detection (BFD) (IPv4 and IPv6), OSPF, BGP and static routes
- Static routes
- Loopback interface
- DHCP relay
- PIM-SM/PIM-SSM
- Active-Active Multicast Routing with VRRP
- Route Maps

Fabric Slicing and Network Virtualization

(requires Fabric Edition license)
- VXLAN VTEP with high availability
- Dynamic VXLAN tunnel creation
- VXLAN routing
- VXLAN bridging
- VXLAN egress load balancing
- ARP optimization
- Virtual Link Extension (VLE or transparent point-to-point Ethernet links over VXLAN)
- Link state tracking across the fabric for VLE
- Distributed anycast gateway
- Distributed subnets
Features and Specifications (continued)

QoS and Policy
(Enterprise and Fabric Edition)
• 802.1p Class of Service (CoS)
• Differentiated Services Code Point (DSCP)
• DSCP to CoS mapping
• CoS to DSCP mapping
• Strict priority queueing
• CoS interface trust (CoS/DSCP)
• Egress per port rate limiting
• Per-port, per-CoS minimum egress bandwidth guarantee
• Per-port, per-CoS maximum egress bandwidth limit
• Weighted Round Robin (WRR) Scheduling
• ACL (vFlow) policing/rate limiting
• Priority-based Flow Control (PFC)

Monitoring and Visibility
Enterprise Edition
• Port Mirroring
• RSPAN
• ERSpan
• RFC 3176 sFlow
• Traceroute
• Monitor logged-in users

Fabric Edition adds
• Fabric-wide embedded network and application traffic telemetry
• nvFlow for TCP connection visibility
• nvFlow for VXLAN
• nvFlow for Virtual Link Extension (VLE)
• Flowtrace (trace synthetic flows across the fabric)
• IPFIX export for nvFlow
• Integrated packet capture/analysis with TCPDump (supported on selected switches)

VirtualWire Feature Set
(requires VirtualWire feature license)
• One:Many TAP/mirror aggregation
• Many:Many TAP/mirror aggregation
• Many:One TAP/mirror aggregation
• Bypass switch for inline tool deployment
• Bypass switch heartbeat packet to detect inline tool failure
• Layer 2/3/4 traffic filtering
• Layer 1 cut-through mode
• Error pass-through

Management, Automation and Extensibility
Enterprise Edition
• CLI
• RESTful API (with CLI parity)
• Pluribus UNUM for one-touch management and automation (see Pluribus UNUM datasheet)
• Ansible automation
• Zero-Touch Replacement for nodes in an HA cluster
• Software upgrade roll-back preserving current configuration

Supported RFCs
(Enterprise and Fabric Edition)
• RFC 7C8:D26 User Datagram Protocol (UDP)
• RFC 791 IP
• RFC 792 Internet Control Message Protocol (ICMP)
• RFC 793 TCP
• RFC 826 ARP
• RFC 854 Telnet
• RFC 959 FTP
• RFC 1305 Network Time Protocol (NTP) Version 3
• RFC 1519 Classless Interdomain Routing (CIDR)
• RFC 1591 Domain Name System (DNS) Client
• RFC 1724 RIPv2 MIB Extension
• RFC 1812 IPv4 Routers
• RFC 2236 Internet Group Management Protocol
• RFC 2328 OSPF Version 2
• RFC 2453 RIP Version 2
• RFC 2460 Internet Protocol, Version 6 (IPv6) Specification
• RFC 2519 A Framework for Inter-Domain Route Aggregation
• RFC 3101 OSPF Not-So-Stubby-Area (NSSA) Option
• RFC 3137 OSPF Stub Router Advertisement
• RFC 3376 Internet Group Management Protocol
• RFC 3509 Alternative Implementations of OSPF Area Border Routers
• RFC 4271 BGPv4
• RFC 4443 Internet Control Message Protocol (ICMPv6) for IPv6 specification
• RFC 4456 BGP Route Reflection
• RFC 4486 Subcodes for BGP Cease Notification Message
• RFC 4861 Neighbor Discovery for IPv6 (IPv6)
• RFC 4893 BGP Support for Four-Octet AS Number Space
• RFC 7011 IP Flow Information Export (IPFIX)

SNMP MIBs
(Enterprise and Fabric Edition)
• RFC 3635 EtherLike-MIB
• RFC 3418 SNMPv2-MIB
• RFC 2863 IF-MIB
• RFC 2096 IP-FORWARD-MIB
• RFC 4363 Q-BRIDGE-MIB
• RFC 4486 BRIDGE-MIB
• RFC 4273 BGP4-MIB
• RFC 4750 OSPF-MIB
• RFC 2787 VRRPv2-MIB
• RFC 4293 IP MIB
• RFC 4863 STP MIB

VMware Integration with vCenter, vSAN
(requires Fabric Edition license)
• VMware vsphere support with vsphere object discovery and association with vPorts (VM, Port Groups, vSwitches, VMkernel)
• Automated switch ports configuration based on distributed vSwitch teaming policies (LAGs, vLAGs)
• Automated VLAN and end-to-end VXLAN fabric auto-provisioning based on distributed portgroups
• Automated multicast fabric provisioning for vSAN

Configuration roll-back and roll-forward
Syslog
SNMP v1, v2, v3
IPv6 SNMP
SHA for SNMP authentication
SSHv2
TLS 1.2
IPv6 for management
Dual stack IPv4/IPv6 management
Configuration export via SCP
Native KVM support (supported on selected switches)
Ordering Information
Software only, requires compatible switch hardware. License does not include maintenance; order desired maintenance separately.

Netvisor ONE Enterprise Edition Perpetual License (licensed per switch device)
- ONVL-10G-ENT-LIC — Pluribus Open Netvisor Linux Enterprise Edition for 10 GbE switches
- ONVL-40G-ENT-LIC — Pluribus Open Netvisor Linux Enterprise Edition for 40 GbE switches
- ONVL-100G-ENT-LIC — Pluribus Open Netvisor Linux Enterprise Edition for 100 GbE switches

Netvisor ONE Fabric Edition Perpetual License (licensed per switch device; includes all Enterprise Edition functionality)
- ONVL-10G-PLEX-LIC — Pluribus Open Netvisor Linux Fabric Edition for 10 GbE switches
- ONVL-40G-PLEX-LIC — Pluribus Open Netvisor Linux Fabric Edition for 40 GbE switches
- ONVL-100G-PLEX-LIC — Pluribus Open Netvisor Linux Fabric Edition for 100 GbE switches

Netvisor ONE vNET Segmentation License (licensed per fabric)
- VNV-4-VNET — vNET license for network segmentation and multi-tenant operation

Netvisor ONE VirtualWire License Add-on (licensed per device and requires Enterprise Edition license)
VirtualWire feature set adds network packet broker and Layer 1 LAB automation capabilities. VirtualWire is licensed on a per-switch basis in addition to the base Enterprise Edition license and may be licensed with or without fabric licenses.
- ONWL-10G-VW-LIC — VirtualWire service license for 10G switch
- ONWL-25G-VW-LIC — VirtualWire service license for 25G switch
- ONWL-40G-VW-LIC — VirtualWire service license for 40G switch
- ONWL-100G-VW-LIC — VirtualWire service license for 100G switch
Netvisor ONE OS Version 5.0 Scalability

Supported Hardware Devices

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluribus Freedom</td>
<td>9272-X</td>
<td>9272-T</td>
<td>9232-Q</td>
<td>9572-L-V</td>
</tr>
<tr>
<td>Dell EMC</td>
<td>S4048-ON</td>
<td>S4048T-ON</td>
<td>S6010-ON</td>
<td>Z9100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Addresses*</td>
<td>288,000</td>
</tr>
<tr>
<td>IPv4 LPM Routes*</td>
<td>16,000</td>
</tr>
<tr>
<td>IPv4 host table size*</td>
<td>16,000</td>
</tr>
<tr>
<td>Rapid per-VLAN Spanning Tree (RPVST) instances</td>
<td>256</td>
</tr>
<tr>
<td>VLANs (with MST)*</td>
<td>4,096</td>
</tr>
<tr>
<td>MST Instances</td>
<td>20</td>
</tr>
<tr>
<td>Link Aggregation Group (LAG)</td>
<td>40</td>
</tr>
<tr>
<td>Number of links per LAG</td>
<td>16</td>
</tr>
<tr>
<td>Multi-chassis LAG (vLAG)</td>
<td>32</td>
</tr>
<tr>
<td>Member ports per vLAG</td>
<td>16</td>
</tr>
<tr>
<td>IGMP Groups</td>
<td>4,000</td>
</tr>
<tr>
<td>MLD Groups</td>
<td>4,000</td>
</tr>
<tr>
<td>Traffic Mirroring</td>
<td>4 sessions</td>
</tr>
<tr>
<td>Jumbo Frames</td>
<td>9612 bytes</td>
</tr>
<tr>
<td>ACL Entries</td>
<td>2,000</td>
</tr>
<tr>
<td>L3 Interfaces</td>
<td>64</td>
</tr>
<tr>
<td>VRFs</td>
<td>1,000</td>
</tr>
<tr>
<td>Subnets with anycast gateway</td>
<td>2,000</td>
</tr>
<tr>
<td>VRRP groups*</td>
<td>256</td>
</tr>
<tr>
<td>BGP Neighbors</td>
<td>64</td>
</tr>
<tr>
<td>OSPF Neighbors</td>
<td>64</td>
</tr>
<tr>
<td>BFD Sessions</td>
<td>64</td>
</tr>
<tr>
<td>ECMP Paths</td>
<td>16</td>
</tr>
<tr>
<td>VXLAN Tunnels</td>
<td>1,000</td>
</tr>
<tr>
<td>QoS Queues</td>
<td>8</td>
</tr>
<tr>
<td>Telemetry: Open TCP Connections</td>
<td>16,000</td>
</tr>
<tr>
<td>Telemetry: Total TCP Connections</td>
<td>64,000</td>
</tr>
<tr>
<td>Telemetry: TCP Connection Track Rate</td>
<td>5,000/sec</td>
</tr>
<tr>
<td>Number of VNET Managers</td>
<td>1</td>
</tr>
<tr>
<td>Number of vRouters</td>
<td>2</td>
</tr>
</tbody>
</table>

Traffic Convergence Time (ms) After Network Failures

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Single Link Failure (Leaf-to-Spine)</th>
<th>Dual Link Failures (Leaf-to-Spine)</th>
<th>Spine Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluribus Freedom 10 Gigabit Ethernet Switch - 9272-X</td>
<td>≤ 310ms</td>
<td>≤ 400ms</td>
<td>≤ 75ms</td>
</tr>
<tr>
<td>Pluribus Freedom 25/100 Gigabit Ethernet Switches - 9572-V & 9532-C</td>
<td>≤ 60ms</td>
<td>≤ 550ms</td>
<td>≤ 50ms</td>
</tr>
</tbody>
</table>

Notes:
- Functionality and scalability varies based upon underlying open networking hardware capabilities
- * = Limited by hardware